geoscientificInformation
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
-
This layer shows the boundaries of each airborne gravity survey acquired by the NSW Government. Details on the spacing and age of the gravity data within each project area are in the attributes. The information contained in this publication is based on knowledge and understanding at time of writing (April 2017). Because of advances in knowledge, users are reminded of the need to ensure that information upon which they rely is up to date. The information contained in this publication may not be or may no longer be aligned with government policy nor does the publication indicate or imply government policy.
-
This data set is modified from the Australian Geological Provinces Database (Geoscience Australia) and contains descriptions and spatial extents of the fundamental geological elements of NSW. Province types include sedimentary basins, tectonic provinces such as cratons and orogens, igneous provinces, and metallogenic or mineral provinces. At its simplest, a province may describe a sedimentary basin and its fill (e.g. the Sydney Basin). However, provinces may also be defined by a complex history of tectonics, metamorphism, magmatism, or metallogenesis. Provinces outlines, including their subsurface extent, are compiled at around 1:1 million scale. Descriptions of the provinces include age and geological history, parent-child hierarchy, constituent stratigraphic units and relations to surrounding provinces.
-
The Geological Survey of NSW developed a Seamless Geology of UTM Zone 56 during 2014 as part of a project to develop a seamless vector geology dataset of the best available geological mapping data covering the whole of NSW.The overarching aims of the Statewide Seamless Geology Project were to: (i) compile the different original scales, formats and rock unit naming conventions into a consistent, statewide format; (ii) edge-match the geology across existing map sheets; and (iii) interpret the basement geology under cover. The resulting geodatabase comprises a series of layers which include: (i) solid basement geology; (ii) cover rocks (defined as undeformed and unmetamorphosed); (iii) Mesozoic igneous rocks; and (iv) Cenozoic sedimentary and igneous rocks. The project was divided into 3 major stages corresponding to the UTM zones which divide New South Wales. This dataset includes the seamless geology layers from the NSW portion of UTM Zone 56 (ie.east of 150 degrees longitude to the coast).
-
The Geological Survey of NSW developed a Seamless Geology of UTM Zone 56 during 2014 as part of a project to develop a seamless vector geology dataset of the best available geological mapping data covering the whole of NSW.The overarching aims of the Statewide Seamless Geology Project were to: (i) compile the different original scales, formats and rock unit naming conventions into a consistent, statewide format; (ii) edge-match the geology across existing map sheets; and (iii) interpret the basement geology under cover. The resulting geodatabase comprises a series of layers which include: (i) solid basement geology; (ii) cover rocks (defined as undeformed and unmetamorphosed); (iii) Mesozoic igneous rocks; and (iv) Cenozoic sedimentary and igneous rocks. The project was divided into 3 major stages corresponding to the UTM zones which divide New South Wales. This dataset includes the seamless geology layers from the NSW portion of UTM Zone 56 (ie.east of 150 degrees longitude to the coast).
-
The isotope geochemistry database contains geochronology and geological process data managed by the Geological Survey of NSW (GSNSW). Isotopic systems / techniques are U/Pb, K/Ar, Ar/Ar, Rb/Sr, Pb/Pb, Re/Os, Sm/Nd, Lu/Hf and stable sulfur, carbon, oxygen and hydrogen. The database stores location and sample collection information, lithological description, analytical and interpretation information for geological samples in New South Wales. The database includes links to stratigraphic unit, mineral occurrence and drill hole data. Some fields are controlled by look up tables.
-
Depth contours derived from the NSW Basement Elevation Model.
-
The Geological Survey of NSW developed a Seamless Geology of UTM Zone 56 during2014 as part of a project to develop a seamless vector geology dataset of the best available geological mapping data covering the whole of NSW.The overarching aims of the Statewide Seamless Geology Project were to: (i) compile the different original scales, formats and rock unit naming conventions into a consistent, statewide format; (ii) edge-match the geology across existing map sheets; and (iii) interpret the basement geology under cover. The resulting geodatabase comprises a series of layers which include: (i) solid basement geology; (ii) cover rocks (defined as undeformed and unmetamorphosed); (iii) Mesozoic igneous rocks; and (iv) Cenozoic sedimentary and igneous rocks. The project was divided into 3 major stages corresponding to the UTM zones which divide New South Wales. This dataset includes the seamless geology layers from the NSW portion of UTM Zone 56 (ie.east of 150 degrees longitude to the coast).
-
A subset of the NSW water bore dataset focused specifically on Cobar.
-
Hydrogeochemistry is the sampling and analysis of water to test its chemical properties. The chemistry of bore water can provide clues to the properties of the underlying rocks it has flowed through. Hydrogeochemistry data provides useful information about the quality of groundwater and the processes affecting it. The data is useful for landholders and local government agencies in assessing groundwater resources and their suitability for human and animal consumption, and for industry, other government agencies and scientists to assist with targeting and assessment of natural resources in the earth’s crust. The hydrogeochemistry data presented here has been sourced from various entities including the Geological Survey of New South Wales (GSNSW), Water NSW, CSIRO, and Geoscience Australia (GA). GSNSW and GA collect hydrogeochemistry data on a project basis. CSIRO has curated a groundwater hydrochemistry dataset by collating and standardising data from most State and Territory lead water agencies. Data within NSW will be continually added to this dataset as it is collected or acquired by GSNSW in the future. The hydrogeochemistry dataset presented here includes the following data: • Field measurements and laboratory analyses, such as pH, electrical conductivity, and total dissolved solids (TDS, a measure of salinity) • Major and minor ions, such as sodium and calcium • Trace element metals and non-metals, such as gold, silver, copper and zinc • Stable and radioactive isotopes, such as oxygen-18, carbon-14, and sulphur-34 In addition to this, CSIRO has calculated variables such as saturation indices, which are derived from the hydrochemistry measurements. Information for methodologies used by CSIRO, including the saturation indices, is available from the CSIRO Research Publications Repository.
-
Core library samples that have been scanned by the NSW Hylogger. The HyLogger system acquires information on rock, ore and alteration minerals in drillcore, chips and pulps that are often difficult or impossible for the human eye to interpret correctly. Reflected light from the samples is broken into hundreds of different wavelengths by several spectrometers, allowing the recognition of unique spectral signatures for each mineral. This technology is also used on cores from petroleum and carbon dioxide (CO2) geosequestration wells to obtain mineralogical data that may complement porosity and permeability studies. X-ray diffraction and X-ray fluorescence instruments are used for rapid characterisation of a wide range of geological materials and for validating HyLogger data. The GSNSW offers a number of HyLogger scanning services to industry and academia. Each service requires a level of investment by the client and offers different periods of confidentiality.
NSW Geoscience Metadata